
Ronnie Holm

June 15, 2009



Overview
 No preching

 Introduction to terminology

 Examples



Example of a unit test
 Easy to test method with no side effects



Unit test, meet real world
 Methods delegate to other methods and objects

 Unit test framework affects code under test by 
providing input and observing output

 To test one and only one property at a time, external
dependencies of code under test must be controlled

 Unit test framework alone is insufficient for testing
but the simplest of methods

 Unit test framework is not only for unit testing



A unit test challenge
 Code takes external

dependency on config
setting

 Side effect that cannot be
abstracted away using a 
unit test framework

 Other examples

 Retrieve url of the web

 Execute a process

 Other objects in general



Inversion of Control
 Dependency injection is one way of IoC

 Dependency injected into object under test

 During unit testing, a fake dependency that implements
the interface of the real dependecy is injected

 Unit test controls dependency and hence controls object

 Fake dependencies are easily implemented by hand, but it’s
repetitive and tedious

 Therefore, people use a mocking framework like Rhino 
Mocks or TypeMock



Unit test challenge: solution



How mocking works
 FakeConfigReader is a hand-written mock

 FakeConfigReader is what Rhino Mocks or TypeMock 
automatically generates

 Rhino Mocks emits MSIL implementing 
IConfigReader. In memory an assembly is created and 
compiled, and subsequently loaded into the MSTest 
AppDomain

 TypeMock intercepts calls by hooking into the CLR 
and emitting MSIL as it intercepts calls

 Whatever approach, the unit test looks the same



Mocking by TypeMock, take 1



Mocking by TypeMock, take 2



Properties of a good unit test
 Resist urge to morph unit test into integration test

 Use clever naming of test cases

 No more than 10-15 lines of code

 Verify one and only one property of code under test

 Idempotence property of utmost importance

 Individual tests run in milliseconds

 Test suite runs in a couple of seconds



Conclusion
 Unit testing and mocking doesn’t have to be hard

 Even legacy code can be unit tested

 Red-Green refactoring is widely popular in some form

 Unit testing is as much about design as test


